
Please write your name and username here legibly: ___

C212/A592 ◌ 6W2 Summer 2017 ◌ Early Evaluation Exam: Fundamental Programming Structures in Java

Use BigDecimal (a class defined in package java.math) to write the following expressions in Java:

 1. 4.35 * 100

 2. 0.1 + 0.1 + 0.1

 3. 2 + 3 * 4

 4. (2 + 3) * 4

 5. (1 + 2) * (3 + 4)

 6. 1 + 2 * 3 + 4

Answer: Lab 011 is entirely identical to this group of six expressions2. This3 is how we started the class on

Monday June 19. Specifically Lecture Notes 01 directly address4 the class, its purpose and syntax. So

there can’t be any misunderstanding whatsoever what this group of questions is asking. First, let’s be

sure we know why we do this, then let’s calculate one expression completely:

Here’s another way you can write the answer to the first question:

1 https://www.cs.indiana.edu/classes/c212-dgerman/sum2017/lab01.html
2
 I graded this lab promptly from California and provided immediate feedback (see What’s New? For Thu 06/22).

3 https://www.cs.indiana.edu/classes/c212-dgerman/sum2017/0619a.html
4 https://www.cs.indiana.edu/classes/c212-dgerman/sum2017/06-19-2017/image009.jpg

Having said this here’s a perfectly good solution to the six questions as a group:

You will notice we print the answer to the fifth problem twice to remind you of formatted printing.

Evaluate the following Java expressions:

 7. 5 % 3 8. -5 % 3

Answer: These two questions each aim to determine the remainder to an integer division. How many

threes are there in five? There is only one three in five. If we take all the threes out (and we agreed

there is only one) from five we’re left with a remainder of 2 (two) which is the answer for question #7.

As far as question #8 is concerned the correct answer to it is 1 (one) if you are a mathematician and -2

(negative two) if you are a Java programmer. To understand the difference5 we remind you that classes

of congruence modulo n only involve positive remainders whereas in Java remainders always have the

sign of the dividend. Thus -5 % 3 == -(5 % 3) so the answer to question #8 is -2 (negative two).

 9. "substring".substring("length".length())

Answer: This is the same as "substring".substring(6) which turns out to evaluate to "ing".

5 https://en.wikipedia.org/wiki/Modulo_operation#Common_pitfalls

10. true || ! true && false

11. true || ! (true && false)

12. "This\nis\nnot\nit!".length()

13. "\\\\\\\\".length()

14. "mesquite in your cellar".replace('e', 'o')

15. "\\\\n\"".length()

16. Write a Java String literal that prints as five backslashes: \\\\\

Answers. Exercises #9-16 can be easily tested as follows:

Questions like question #14 are discussed in the book (see, for example, the self-check exercises on page

45). The book encourages us to check the String API and specifically the replace method and that’s

where you will find6 this exact substitution example discussed. Questions #12, #13, #15, #16 simply

check what we have learned and practiced7 in Homework 01: special characters (like double quote, new

line, backslash, etc.) need to be escaped in Strings and in the process the representation becomes

longer. However a special character is still one character even if we need two characters to represent it.

Questions #10 and #11 are very basic and check your understanding of the order of precedence of the

boolean operators. For example !true && false evaluates to false (since the negation operator

binds closest and therefore acts first) while !(true && false) evaluates to true since the parens

delay the logical negation until the very end.

6 https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#replace-char-char-
7 https://www.cs.indiana.edu/classes/c212-dgerman/sum2017/hw01.html

file://///n

Simplify the following expressions where b is a boolean variable and n is an integer:

17. b == true 18. b == false

19. b && !b 20. b || !b

Answers: b, !b, false, and true. We discussed these in class (lecture and lab) via truth tables. If you

want to convince someone (or yourself) that this is indeed the case you can write code to test your truth

table. Take a look at the demonstration for question #18 below, in Java:

Here’s how this program runs (and prints the truth table):

21. n > 3 && n > 5 22. n > 3 && n < 5

Answers: n > 5 for question #21 and n == 4 for question #22. To understand the thought process

remember these are boolean expressions. We need to plot their truth tables to then try to guess what

other function, with a more compact representation, would be able to behave the same over all n’s.

You can see in this table that the same behavior is obtained with just (n > 5). In a similar fashion we

determine the answer to question #22: the points of interest are still 3 and 5, but the second term in the

expression is different. So drawing the table again we obtain:

So the steps (as we indicated in class last week) are:

(a) identify the variables (here: just n)

(b) identify the points of interest (here: 3 and 5)

(c) draw the truth table for the subexpressions

(d) aggregate that into the truth table for the entire expression

(e) think hard what simpler expression might match the resulting table

We proceed in the same fashion for the other expressions listed below:

Example:

23. n < 3 && n > 5 24. n < 3 || n > 5

 false Can’t be simplified further (see below).

25. n > 3 || n > 5 26. b && true

 n > 3 b

27. b && false 28. b || true 29. b || false

 false true b

Sometimes the answer to step (e) is: none. In that case it's still worthwhile to try to find equivalent

expressions. We now need to discuss #24. Can we simplify n < 3 || n > 5 in Java? Here’s the table:

So it seems we need to state (in Java) that n is not in the set {3, 4, 5}. Can we do that?

Can we simplify 24. n < 3 || n > 5 using Java syntax?

I say that the answer to this question is: no8.

Can we write an equivalent expression (though not necessarily simpler)?

That’s an entirely different proposition.

Sadly none of these is a simplification9 (since the original expression is only 8 characters long).

Evaluate the following Java expressions:

30. 1 / 2 * 4 31. 4 * 1 / 2

 0 (zero) 2

In the absence of parens evaluate * and / left to right. All operands are ints so be careful.

32. (41 - 32) * 5 / 9 33. 5 / 9 * (41 – 32)

 5 0

The first expression better approximates (in ints) the Celsius value of 41F.

34. If a and b are boolean variables is !(a && b) equivalent with (!a || !b)? Why or why not?

8
 And that should be a perfectly legitimate answer: not every expression can be simplified.

9 But they're interesting equivalent expressions aren't they?

Here’s what that program produces (a truth table):

This proves the equivalence known as DeMorgan10 law (one of them, there is a dual to this one).

35. If m and n are int variables and n is not zero can the following expression be simplified?

 m / n * n + m % n

If not briefly explain why. If yes what is the value?

Answer: yes, m, since an integer division always produces a quotient (m/n) and a remainder (m%n).

36. What values are in n and m at the end of the following code fragment:

 int n = 3, m = 5; n = m + n; m = n - m; n = n - m;

Answer: the values in m and n are switched so n is 5 and m is 3 at the end.

What are the types of each of the following Java expressions:

37. Math.sqrt(2) 38. System.out 39. 3 '3' and "3"

 double java.io.PrintStream int char String

Clearly these are all expressions. Every expression has a value, every value has a type. The square root of

a number (in this case 2) is a fractional number. In Java the default for that (as can be seen in the return

type part11 of the signature of the method invoked) is double. The textbook introduces the answer to

question #38 as early as Chapter 1 (see page 24 at the top, end of chapter summary). You can also find

the type I am asking for by just typing the expression in DrJava at the prompt (in the Interactions Panel):

As for the answers to #39 (a variation on question #7 from your text, p. 40) we already discussed in class

that 3 is an int value (you need type 3l if you want a long value instead), 3.0 is a double (3.0f is how

you indicate that you want a float) an we also enumerated very clearly the differences between chars

and Strings and their respective delimiters ' and " (and compared even with Python).

10 See your textbook, page 213.
11 https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#sqrt-double-

40. What is wrong with the following loop for finding the position of the first space in a String str?

boolean found = false;

for (int position = 0;

 !found && position < str.length();

 position++){

 char c = str.charAt(position);

 if (c == ' ') {

 found = true;

 }

}

Answer: This is taken straight from your book12 and because of that I just don’t want to say anything

about its answer here. I find that you are disrespecting your book so much (at least some of you) at this

time that it mandatory for me to ask that you please check the answer in your text for this question.

41. What is wrong with the following loop for reading a sequence of values?

System.out.println("Enter values, Q to quit: ");

do {

 double value = in.nextDouble(); // in is a java.util.Scanner

 sum = sum + value; // sum, count defined earlier as doubles

 count++; // both properly initialized upon creation

} while (in.hasNextDouble());

Answer: see your textbook, page 262, self-check question #25.

42. Suppose Java didn’t have a do loop. Could you rewrite any do loop as a while loop? Explain w/ code.

Answer: see text page 258 self-check question #18.

Quick summary of answers:

 1. import java.math.BigDecimal;

 // then somewhere in a method

 BigDecimal a = new BigDecimal("4.35"),

 b = new BigDecimal("100);

 BigDecimal one = a.multiply(b);

 2. BigDecimal c = new BigDecimal("0.1");

 BigDecimal two = c.add(c).add(c);

 3. BigDecimal d = new BigDecimal("2"),

 e = new BigDecimal("3"),

 f = new BigDecimal("4");

 BigDecimal three = d.add(e.multiply(f));

 4. BigDecimal g = new BigDecimal("1");

12 Page 271 in your text self-check question 34 (continues on page 272).

 BigDecimal four = (d.add(e)).multiply(f);

 5. BigDecimal five = (g.add(d)).multiply(e.add(f));

 6. BigDecimal six = g.add(d.multiply(e)).add(f);

 7. 2

 8. -2

 9. "ing"

10. true

11. true

12. 15

13. 4

14. "mosquito in your collar"

15. 4

16. "\\\\\\\\\\"

17. b

18. !b

19. false

20. true

21. n > 5

22. n == 4

23. false

24. Can't be simplified further.

25. n > 3

26. b

27. false

28. true

29. b

30. 0

31. 2

32. 5

33. 0

34. Yes, truth table. DeMorgan's law.

35. Yes, it is equal to m. Simple arithmetic (quotient, remainder).

36. Values are swapped between n and m.

37. double

38. java.io.PrintStream

39. int, char and String

40. Code runs well but position is not available after the loop ends.

41. If we start by typing a non-number the code crashes.

42. Yes, like this:

do { boolean first = true;

 <body>; while (first || <cond>) {

} while (<cond>); <body>;

 first = false;

 }

